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Abstract:

Estuarine managers need ecological forecasting tools to prepare for the potential
impacts of future climate change. With funding from the NASA Ecological
Forecasting program, and in partnership with the NOAA National Estuarine
Research Reserve System (NERRS), we tested the viability of integrating Earth and
in situ observations with a model of tidal marsh elevations to forecast spatially-
explicit coastal habitat response to sea level rise. Our research area focused on a
brackish marsh, Rush Ranch, one of two sites in the San Francisco Bay NERR, one of
a national network of 28 reserves that operate a System-wide Monitoring Program
to assess habitat responses to sea level rise. Using a site-calibrated version of the
Marsh Equilibrium Model (MEM3), we tested the sensitivity of the model's
projections for mineral and organic accretion based on two primary variables: total
suspended sediment and peak aboveground biomass. Earth observations of these
two variables from Landsat 8, AVIRIS and World View-2 sensors will be compared
for their utility to generate spatially-explicit model outputs. Elevation responses for
four zones (unvegetated, high, middle, and low marsh) will be incorporated into a
spatial model to produce maps for assessing habitat sustainability and potential for

landward migration. As a core member of one of 5 NOAA-wide pilot projects for e )
sentinel sites, SF Bay NERR is actively implementing national elevation monitoring ' mm;n
protocols. If the remotely sensed data retrieval is sufficiently robust, this approach A
will be tested incrementally for broader application in other coastal areas. The
ability to integrate inexpensive synoptic spectral data to populate and validate D__
accretion models could expand opportunities to project marsh sustainability both S

locally and nationally.

Marsh Elevation Model:

MEM incorporates both physical and biological feedbacks to changing relative elevations. MEM describes feedbacks
among the plant community, sediments, and tides and that explains the dependency of the relative elevation of a tidal
marsh on rising sea level. The model assumes a calibrated rate of belowground organic matter accretion and that

Habitat Distribution Model: e.g. Schile et al. 2014, PLOS
100-yr habitat projections with ArcGIS Model Builder

MEM elevation projections + DEM = centimeter-level projection across landscape

Species Distribution Model: .
Vegetation and wildlife habitat by elevation [ e

Goal = Applicability to all 28 NERR sites, as
evaluated by data and algorithm performance
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Two most important inputs may be remotely sensed
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Photos of
a. Schoenoplectus acutus,
b. Typha latifolia,

c. .above-canopy photo of S.
acutus displaying substrate
of dead standing
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N d. d above-canopy photo of

Hydrocolor App allows public collection of
Typha spp. displaying

| | | | | | THOY - i Future Steps:
B kT 1. Single band algorithms 2. Band ratios 3. Matrix Inversions quantitative estimates of turbidity and
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Peak Aboveground Biomass

Suspended Sediment Concentration (mg/L) or TSM Citizen Science
Field-verified testing of spectral models

Field verified spectral indices: 3 approaches
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| s This tool is directly responsive to NOAA-NERR strategic coastal planning.
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Landsat 8 bands) also successfully estimated biomass, with  variability in measured biomass captured in each component is
R? of 0.75, indicating the feasibility of this sensor to provided for each plot (Byrd et al. RSE in press).
estimate wetland vegetation biomass (Byrd et al. 2013)

Inputs.

Acknowledgements: Lisa Schile, Brian Bergamaschi, Bryan Downing




